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Multipoint Approximations of Identity-by-Descent
Probabilities for Accurate Linkage Analysis
of Distantly Related Individuals

Cornelis A. Albers,1,* Jim Stankovich,2,3 Russell Thomson,3 Melanie Bahlo,2 and Hilbert J. Kappen1

We propose an analytical approximation method for the estimation of multipoint identity by descent (IBD) probabilities in pedigrees

containing a moderate number of distantly related individuals. We show that in large pedigrees where cases are related through untyped

ancestors only, it is possible to formulate the hidden Markov model of the Lander-Green algorithm in terms of the IBD configurations of

the cases. We use a first-order Markov approximation to model the changes in this IBD-configuration variable along the chromosome. In

simulated and real data sets, we demonstrate that estimates of parametric and nonparametric linkage statistics based on the first-order

Markov approximation are accurate. The computation time is exponential in the number of cases instead of in the number of meioses

separating the cases. We have implemented our approach in the computer program ALADIN (accurate linkage analysis of distantly

related individuals). ALADIN can be applied to general pedigrees and marker types and has the ability to model marker-marker linkage

disequilibrium with a clustered-markers approach. Using ALADIN is straightforward: It requires no parameters to be specified and accepts

standard input files.
Introduction

Even in the new era of genome-wide association studies,

the more traditional approach of linkage analysis with

multiplex pedigrees remains a powerful, efficient method

for mapping rare disease-susceptibility alleles.1 It is power-

ful not only for the mapping of Mendelian disease alleles

of complete penetrance but also for the mapping of com-

plex disease alleles of incomplete penetrance. Generally,

for alleles of incomplete penetrance, it is not possible to

find clusters of closely related individuals presenting with

disease. However, it might be possible to identify clusters

of distantly related individuals, particularly in founder

populations. Because haplotype sharing between more

distantly related individuals is rarer, any observed sharing

is more significant. An excellent example of the power of

large pedigrees with distantly related individuals was pro-

vided by a recent study of pituitary adenoma predisposi-

tion in northern Finland.2 Significant linkage was obtained

with a single nine-generation pedigree containing just six

affected individuals.

For nonparametric, affecteds-only linkage analysis of

large families, the key computational challenge is the deter-

mination of identity by descent (IBD) sharing probabilities.

These are the probabilities, given the available genotype

data, that various clusters of affected individuals have in-

herited haplotype IBD from common ancestors at various

loci. Exact and approximate linkage algorithms to calculate

IBD-sharing probabilities formulate them in terms of con-

figurations of the inheritance vector.3 This vector has a

binary component for each meiosis, recording whether a

grandmaternal or grandpaternal allele is transmitted from
parent to offspring. The number of possible states of the

inheritance vector increases exponentially with pedigree

size, so exact methods using the Lander-Green algorithm4

(GENEHUNTER,5 ALLEGRO,6 MERLIN7) to enumerate the

probabilities of all possible states become intractable for

large pedigrees, even with the latest algorithmic improve-

ments taking advantage of some symmetries (ALLEGRO2).

For larger pedigrees, approximate Markov chain Monte

Carlo (MCMC) sampling is generally used.8–13 With run

lengths sufficiently long, well-mixing MCMC algorithms

converge to the exact solutions. However, the time required

for the obtainment of an accurate solution can be very long

for some MCMC samplers,14 and some user experience is

required for the determination of when an MCMC run

has converged.

Other factors contribute to the computational complex-

ity, as well. The new dense sets of SNP markers make it pos-

sible to determine patterns of IBD sharing with greater pre-

cision, particularly for multigenerational pedigrees with

many untyped individuals, but increase computational bur-

den. Although for the Lander-Green algorithm the increase

is only linear, for large numbers of markers, the amount of

computer memory and disk space required may be substan-

tial. In addition, with dense marker sets, it is critical to make

allowance for linkage disequilibrium (LD) between nearby

markers. Only one Lander-Green program (MERLIN7) can

handle LD between markers. The MCMC algorithm

MCLINK12 has been extended to allow for LD15,16 but is still

experimental. The two most commonly used MCMC pro-

grams, MORGAN11 and SIMWALK2,8 cannot yet handle LD.

For computation of linkage statistics on large pedigrees

with many generations of untyped individuals, we propose
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that it is not necessary to model explicitly all components

of the inheritance vector for the untyped individuals be

explicitly modeled. Instead, it suffices to model a variable

P that records the IBD-sharing configuration of the top

generation of genotyped individuals. Although the corre-

lations in P are not first-order Markov for any but the

simplest of pedigrees,17–19 it has been successfully approx-

imated as first-order Markov for homozygosity map-

ping20–22 and the determination of genealogical relation-

ships.19 Our contribution is to present an approach for

estimation of parametric and nonparametric linkage sta-

tistics for general numbers of cases with arbitrary degrees

of relatedness, by using first-order Markov approxima-

tions. This requires computation of the probabilities of the

various possible configurations of P and computations of

transition probabilities between configurations as a func-

tion of the recombination fractions. We use a dynamic

programming algorithm based on variable elimination23,24

to compute these probabilities exactly.

We have implemented the approximation in the com-

puter program ALADIN (accurate linkage analysis of dis-

tantly related individuals). We evaluate accuracy in simu-

lated data sets and a real data set and compare ALADIN

with the MCMC program MORGAN in terms of accuracy

and computational efficiency.

Material and Methods

We divide the group of individuals P that together form the ped-

igree into three disjoint groups of individuals A, T, and D such

that P ¼ A W T W D. The group of individuals T is defined by

the requirement that individuals in T are related only by ancestors

without genotype and phenotype information. This group of

untyped ancestors is denoted by A. Every pair of individuals in

T is related by at least one common ancestor from A. For every

individual in T, genotype or phenotype information is available,

or both. The third group, D, contains the remaining individuals.

The individuals of any pedigree can be grouped like this.

ALADIN was designed with the situation in mind where T consists

of a small number of cases (less than ten) diagnosed with the dis-

ease and D consists of a limited number of close relatives (spouses

or children) of the cases that have been recruited to increase the

information content. A is the group of ancestors through whom

the cases are related. There is no limitation on the number of

ancestors A or the number of generations they span, although

the efficiency of ALADIN does depend on the complexity of the

subpedigree formed by these ancestors (see below for details).

Exact computation of the IBD probabilities with the Lander-

Green algorithm is exponential in the number of meioses separat-

ing the cases and can be prohibitively complex when A is large.

We propose to approximate the likelihood of the original HMM

formulation for multipoint linkage analysis4,5 with a likelihood

with lower computational complexity. This is accomplished

through a change of variables based on the partitioning of the

pedigree P into the groups A, T, and D and additional approx-

imations to the prior probabilities of multilocus IBD configura-

tions. The main idea is that exact inference with the Lander-

Green algorithm in this approximate HMM can be performed

efficiently.
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In this section, we describe how to estimate the posterior prob-

abilities of the IBD configurations given marker data in the ap-

proximate HMM. The nonparametric linkage statistics can be

readily calculated from these posterior probabilities. In the Appen-

dix (Estimation of Multipoint Parametric LOD Scores), we describe

how parametric logarithm of odds (LOD) scores can be estimated.

A Change of Variables
We first consider a single marker locus. The exact probabilities of

the possible IBD configurations of the affecteds (the cases) can be

calculated from the posterior marginal distribution of the segrega-

tion indicators snf:

P
�
snf jM,f

�
¼ P

�
sDnf

,sT,sAnf
jM,f

�

¼
X

GD ,GT ,GA

P
�
GD,GT,GA,sDnf

,sT,sAnf
jM,f

�
, (1)

where M denotes all observed marker genotypes, f the vector of

allele frequencies, and the subscript nf a nonfounder in the pedi-

gree. (Only nonfounders have segregation indicators. By defini-

tion, individuals in T are always nonfounders; hence, we discard

the subscript for these segregation indicators.) GD, GT, and GA

represent the ordered genotypes of the individuals in the three

groups. The component of the inheritance vector ðsT,sAnf
Þ

uniquely determines the IBD configuration of the alleles of the

individuals T. However, different inheritance vectors may corre-

spond to the same IBD configuration, and for this reason, we now

introduce the variable P, which summarizes the IBD configuration

of the alleles of the individuals T. Any configuration ðsT,sAnf
Þ can be

mapped to a single value of P; all configurations mapped to the

same value of P have the same IBD configuration with respect to

the alleles contained in GT. When P is substituted for sT,sAnf

in Equation 1, it is clear that the nonparametric statistics can be

computed alternatively from the posterior marginal distribution

P
�
sDnf

,P jM,f
�
¼

X
�

sT ,sAnf

�
˛P

P
�
sDnf

,sT,sAnf
jM,f

�
, (2)

where ðsT,sAnf
Þ˛P denotes the set of configurations with the same

IBD configuration P. The prior probability of an IBD configuration

P of GT is given by

PðPÞ ¼
X

�
sT ,sAnf

�
˛P

P
�
sT,sAnf

�
: (3)

With the assumption that a priori all meioses are independent

and that paternal and maternal inheritance are equally probable,

the evaluation of this sum for a given P amounts to counting

the number of configurations ðsT,sAnf
Þwith the corresponding IBD

configuration.

Figure1 shows one of the possibledescent graphs8 fora pedigree of

nine individuals P {1,.,9}. Suppose that individuals 1, 2, and 3 are

affected and have genotype information, so that T ¼ {1, 2, 3}, that

their ancestors A ¼ {4,.,9} are untyped, and that D ¼ Ø. Only the

paternal alleles of individuals 1, 2, and 3 can be IBD through one

of the ancestors 6 and 7; in the descent graph shown in the figure,

the paternal alleles are all inherited IBD from individual 6. The ma-

ternal alleles can never be IBD because they are inherited from differ-

ent founders. There are five possible IBD configurations of the pater-

nal alleles: ðGp
1 G

p
2 G

p
3Þ, ðG

p
1ÞðG

p
2 G

p
3Þ, ðG

p
1 G

p
2ÞðG

p
3Þ, ðG

p
1 G

p
3ÞðG

p
2Þ, and

ðGp
1 ÞðG

p
2 ÞðG

p
3Þ. Alleles within parentheses are defined to be IBD

and are said to be in the same partition; a concatenation of partitions
2008



defines an IBD configuration. P takes as values the possible IBD con-

figurations. Table 1 illustrates how different inheritance vectors are

mapped to a state of the IBD variable P, which in this example sum-

marizes the IBD configuration of the paternal alleles 1, 2, and 3. The

IBD configuration is uniquely determined by the seven segregation

indicators listed in the table. The two possible values for each segre-

gation indicator are paternal (p) and maternal (m). Segregation indi-

cators for which both values yield the same IBDconfiguration are in-

dicated with p/m. In total, there are 16 configurations of segregation

indicators that imply IBD of G
p
1, G

p
2, and G

p
3 simultaneously; the

prior probability of this configuration thus is PðP ¼ ðGp
1 G

p
2 G

p
3ÞÞ ¼

16=27 ¼ 0:125. In this example, the complexity has been reduced

from 27 to 5 configurations.

Exact Single-Point Computation of Posterior

IBD Probabilities
We first describe how the change of variables from sTnf

,sAnf
to P is

implemented in the single-point case.

By definition of the groups of individuals D, T, and A, the

pedigree likelihood factors as follows (see Figure 2A)

P
�
M,GD,GT,GA,sDnf

,sT,sAnf
jf
�
¼P
�
M,GD,sDnf

jGT,f
�

3 P
�
GT,GA,sT,sAnf

jf
�
: ð4Þ

Consequently, the variables M,GD,sDnf
are independent of

GA,sT,sAnf
conditioned on the ordered genotypes GT (and the

fixed allele frequencies f). This implies that we only need to con-

sider the right-most likelihood term PðGT,GA,sT,sAnf
jfÞ for the

change of variables from ðsT,sAnf
Þ to P.

Next, we derive the marginal likelihood of the variables GT and

P from this likelihood term

PðGT,P j fÞ ¼
P
GA

P
ðsT ,sAnf

Þ˛P

P
�
GT,GA,sT,sAnf

jf
�

¼ PðGT jP,fÞPðPÞ,
(5)

where P(P) is given by Equation 3. Equations 16–18 in the Appen-

dix (Details of Single-Point Computations) provide a detailed

derivation of Equation 5. Below, we give P(GTjP,f ) for the exam-

ple of Table 1. The conditional distribution of P(GTjP,f ) does

not depend on the particular configuration ðsT,sAnf
Þ˛P but only

on the IBD configuration determined by ðsT,sAnf
Þ. This nontrivial

result follows from the assumptions that the prior allele frequency

distributions are the same for all founders, that no genotypes or

phenotypes are observed for the individuals in A, and that pater-

nal and maternal inheritance are equally likely a priori. It allows

configurations ðsT,sAnf
Þ to be clustered with respect to their IBD

configuration for the alleles in GT in the computation of the pos-

terior marginal distribution of Equation 2.

Combining Equations 1, 2, and 4 and the result Equation 5, we

find that the single-point posterior is given by

P
�
sDnf

,P jM,f
�

f
X

GD ,GT

P
�
M,GD,sDnf

jGT,f
�

PðGTjP,fÞPðPÞ, (6)

where the proportionality factor is given by 1/P(Mjf).

With the example of Table 1, we illustrate how the conditional

probability P(GTjP,f) is calculated. Suppose we would like to

know this probability for the IBD configuration P ¼ ðGp
1Þ ðG

p
2 G

p
3Þ,

where allele G
p
2 and G

p
3 are IBD:G

p
2 and G

p
3 are a copy of the same

founder allele, and G
p
1 is a copy of a different founder allele. There

are two contributions of the prior allele frequency distribution,

one for each of the two transmitted founder alleles. This gives

P
�
Gp

1,Gp
2,Gp

3 jP ¼
�
Gp

1

��
Gp

2Gp
3

�
, f
�
¼ P

�
Gp

1 j f
�
P
�
Gp

2 j f
�
d
�
Gp

2,Gp
3

�
,

(7)

Figure 1. Descent Graph of the Top
Configuration in Table 1
Squares represents alleles of males, and
circles represent alleles of females. The
solid black arrows indicate the transmis-
sion of founder allele G6

p to individuals
1 and 2. Thus, the paternal allele G1

p of
individual 1 and the paternal allele G2

p of
individual 2 are IBD. The dashed gray
arrows correspond to the p/m entries in
Table 1.

Table 1. Mapping of Configurations of Segregation
Indicators s to IBD Configuration P

P # s1
p s2

p s3
p s4

p s4
m s5

p s5
m

(1 2 3) 4 p p p p p/m p p/m

(1 2 3) 4 p p p m p/m m p/m

(1 2 3) 4 m m m p/m p p/m p

(1 2 3) 4 m m m p/m m p/m m

(1)(2 3) 4 p p p p p/m m p/m

(1)(2 3) 4 p p p m p/m p p/m

(1)(2 3) 16 m p p p/m p/m p/m p/m

(1)(2 3) 4 m m m p/m p p/m m

(1)(2 3) 4 m m m p/m m p/m p

(1)(2 3) 16 p m m p/m p/m p/m p/m

(1 2)(3) 4 p p m p p/m p p/m

(1 2)(3) 4 p p m m p/m m p/m

(1 2)(3) 4 m m p p/m p p/m p

(1 2)(3) 4 m m p p/m m p/m m

(1 3)(2) 4 p m p p p/m p p/m

(1 3)(2) 4 p m p m p/m m p/m

(1 3)(2) 4 m p m p/m p p/m p

(1 3)(2) 4 m p m p/m m p/m m

(1)(2)(3) 16 p m p p/m p/m p/m p/m

(1)(2)(3) 16 m p m p/m p/m p/m p/m

P indicates the partitioning variable; paternal alleles of individuals within

parentheses are IBD. # indicates the number of configurations of the

segregation indicators.
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where d(x, y) ¼ 1 if x ¼ y and d(x, y) ¼ 0 if x s y, with x and y dis-

crete variables. This ensures that the conditional probability of GT

given P is zero unless all alleles that are IBD have the same value.

For each of the maternal alleles, there is a contribution of the allele

frequency prior because these are never IBD on account of being

inherited from founders:

P
�
Gm

1 ,Gm
2 ,Gm

3 j f
�
¼ P

�
Gm

1 j f
�
P
�
Gm

2 j f
�
P
�
Gm

3 j f
�
: (8)

The conditional probability distribution P(GTjP, f) is given by

the product of the right hand sides of Equations 7 and 8.

Exact Multipoint Computation of Posterior

IBD Probabilities
Given the results of the single-point case, the generalization to

the multipoint case is straightforward. We define the multilocus

IBD variable as P ¼ P1,P2,.,PLg
�

, where L is the number of

markers. (From here on, we will assume that unless a locus super-

script l is specified, variables GT represent multilocus genotypes.)

The configurations of segregation indicators associated with

a given multilocus IBD configuration P are given by the cartesian

product

��
s1

T, s1
Anf

�
˛ P1

�
5
��

s2
T, s2

Anf

�
˛ P2

�
5.5

��
sL

T, sL
Anf

�
˛ PL

�
: (9)

Because we consider multilocus genotypes and segregation indi-

cator configurations, the conditional independence of ðsDnf
, GDÞ

and ðsT, sAnf
, GAf

Þ given GT still holds (see Figure 2B). As a result,

the dependence of the posterior distribution on P can again be

determined from the likelihood term PðGT, sT, sAnf
, GAf

jf, qÞ,
where q is the vector of recombination fractions. From Equation

5, the ordered genotypes G1
T for marker l are conditionally depen-

dent only on Pl and fl, so that the conditional probability dis-

tribution of GT factorizes as a product of markers. Furthermore,

in the exact HMM, there are conditional dependencies only

between the segregation indicators (assuming linkage equilib-

rium). This means that the multipoint equivalent of Equation 5

is given by

PðGT,P j f,qÞ ¼ PðP j qÞ
YL

l¼1

P
�
Gl

TjPl,f l
�
: (10)

The prior distribution PðPjqÞ is explicitly given by

PðPjqÞ ¼
X

ðs1
Anf

,s1
T
Þ˛P1

/
X

ðsL
Anf

,sL
T
Þ˛PL

Y
i˛Anf WT

�
Y

y¼fp,mg
P
�

s
1,y
i

�YL

l¼2

P
�

s
l,y
i j s

l�1,y
i ,qðl,l�1Þ

�
: (11)

Here, the conditional distributions Pðsl,y
i js

l�1,y
i ,qðl,l�1ÞÞ model the

recombination between the markers l and l � 1 for individual i,

and y can be paternal (p) or maternal (m). In contrast with the

prior distribution over the segregation indicators s, the prior dis-

tribution PðPjqÞ is not first-order Markov in the IBD variables Pl

because of the summation and consequently does not factorize

as a product over markers.

We can now write the multipoint generalization of Equation 6

in terms of P by using Equation 10:

P
�
sDnf

,P jM,f,q
�

fP
�
M ,sDnf

,P j f,q
�

¼
X

GD,GT

P
�
M,GD,sDnf

jGT,f
�

PðP j qÞ
Y

l

P
�
Gl

T jPl,f l
�
: (12)

The conditional probability distributions PðGl
TjPl,f lÞ are calcu-

lated for each locus as illustrated in the single-locus case above.

The multipoint likelihood contains the product of a distribution

conditional on P and a prior distribution over P, similar in form

to the single-point likelihood (Equation 5). However, it is not par-

ticularly practical to work with because the summation over the

subspace of Equation 9 required for the computation of PðPjqÞ is

generally not feasible for large number of markers and prevents

application of an efficient forward-backward algorithm.

ALADIN: Exact Inference in an Approximate HMM
We propose to approximate PðPjqÞ with a distribution that is

first-order Markov in Pl. We further assume that the conditional

Figure 2. Graphical Model Representation
The graphical model reflects the conditional independencies of the single-point likelihood. White circles represent unobserved variables,
gray circles represent model parameters assumed to be fixed and known, and gray rectangles represent observed variables, i.e., the marker
genotypes. Panel (A) shows the graphical model corresponding to the single-point likelihood defined in terms of genotype variables and
segregation indicators. Conditioned on the ordered genotypes GT, the variables shown in the dashed rectangle are independent of the vari-
ables outside the dashed rectangle. The graphical model can be alternatively constructed as in panel (B). As the group of ancestors (A) is
defined to have no genotype or phenotype information, the corresponding ordered genotype variables (indicated by dotted lines) can be
removed from the model, yielding the graphical model shown in panel (C). The HMM used by ALADIN is based on the model shown in panel
(D). Here, the unobserved segregation indicators sT and sDnf have been replaced by the IBD variable P, which defines the IBD configuration
of the alleles contained in GT. The ordered genotypes GA of the ancestors (A) are not explicitly modeled.
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probability distribution of Pl given Pl�1 depends only on the

recombination fraction qðl,l�1Þ between markers l and l � 1. This

first-order Markov approximation is given by

PðPjqÞzQð1ÞðP j qÞhP
�
P1
�YL

l¼2

P0
�
Pl jPl�1,qðl,l�1Þ�, (13)

where the superscripted (1) indicates the first-order approxima-

tion. P(P1) is given by Equation 3. The conditional distribution

is computed as follows:

P0
�
PljPl�1,qðl,l�1Þ� ¼ P0

�
Pl,Pl�1 j qðl,l�1Þ�

P
�
Pl�1

� , (14)

where the prime indicates that we compute the marginal distri-

bution in the numerator on the right-hand side exactly in a two-

locus model.

The computation of these probabilities is a crucial step in

ALADIN. Because the pedigree structure is the same for each

marker, the prior IBD-partitioning probabilities are also the same

for each marker,

P
�
Pl
�
¼ P

�
P1
�

c l,

so that this computation has to be performed only once. The

computation of the conditional probabilities must be performed

for every recombination fraction, i.e., for every pair of adjacent

markers. In the special case that all recombination fractions be-

tween the markers are the same, this computation also would

have to be performed only once because the conditional probabil-

ities depend only on the recombination fraction for a given pedi-

gree. We use a dynamic programming algorithm based on variable

elimination24,25 to compute these probabilities exactly. This pro-

Figure 3. Prostate Cancer Pedigree I
Affected individuals are represented by
a black symbol, and genotyped individuals
are indicated with an asterisk.

cedure is outlined in the Appendix (Com-

putation of Prior IBD Probabilities

with Variable Elimination). For practical

application of the approximation, we

require that exact computations of

P0ðPljPl�1,qðl,l�1ÞÞ in the two-locus model

with the junction tree algorithm are feasi-

ble.

The full likelihood of the approximate

model based on Equation 13 is obtained

by substituting this equation into Equa-

tion 12:

P
�
sDnf

,P jM,f,q
�

fP
�
M,sDnf

,P j f,q
�

z
X

GD ,GT

P
�
M,GD,sDnf

jGT,f
�

3 Qð1ÞðP j qÞ
Y

l

P
�
Gl

TjPl,f l
�
: ð15Þ

The main idea of ALADIN is to perform

exact inference of the marginal distribu-

tions Pðsl
Dnf

,PljM,f,qÞ in the approximate

HMM defined by Equation 15 with the Lander-Green algorithm.

Exact inference in the approximate model will result in approxi-

mate IBD probabilities.

In summary of the procedures, the result of the change of vari-

ables from ðsT,sAnf
Þ to P is that the size of the hidden state space

depends no longer on jAj, the number of untyped ancestors, but

only on jPj, the number of possible IBD configurations of the

alleles of the individuals in T. The complexity of computing mar-

ginal distributions Pðsl
Dnf

,PljM,f,qÞ in the approximate HMM may

be substantially lower than in the exact HMM. Therefore, applica-

tion of the forward-backward algorithm to the approximate HMM

can be feasible when application to the exact HMM is not.

Implementation
We have implemented the Lander-Green algorithm and the algo-

rithm to compute the prior IBD probabilities in the computer pro-

gram ALADIN. It calculates normalized NPLpairs and NPLall linkage

statistics, as well as parametric LOD scores (as described in Appen-

dix [Estimation of Multipoint Parametric LOD Scores]) for general

pedigrees in the approximate HMM. It can analyze diallelic and

multiallelic marker data sets. When dealing with dense SNP arrays,

the use of which has rapidly become standard practice, it is im-

portant that linkage disequilibrium between the markers be ac-

counted for. Therefore, we have implemented the same clustered-

markers approach as MERLIN.7 This approach clusters markers

into haplotype blocks for which haplotype frequencies must be

specified. Markers within a haplotype block may be in complete

LD; markers in different haplotype blocks are assumed to be in

linkage equilibrium. Absence of recombination is assumed

for markers in the same haplotype block. ALADIN accepts stan-

dard LINKAGE-formatted locus and pedigree files and uses the

The American Journal of Human Genetics 82, 607–622, March 2008 611



MERLIN format to specify the haplotype blocks and haplotype

frequencies.

Results

Setup

We evaluated the performance of ALADIN in simulated and

real data sets. With data sets simulated in small pedigrees

where exact multipoint computation with MERLIN was

feasible, we evaluated the quality of the ALADIN approxi-

mation of NPLpairs and NPLall. We compared these results

with those of the state-of-the-art MCMC sampler MORGAN,

where we note that MORGAN only provides an approxi-

mation of the NPLpairs statistic. In the comparison with

MORGAN, we also assessed the accuracy of approximations

of parametric LOD scores. With data sets simulated in

large pedigrees where exact multipoint computation with

MERLIN was not feasible, we estimated the type I error rate

of ALADIN. We also compared the ALADIN and MORGAN

approximation of NPLpairs with the value of NPLpairs of the

true inheritance vector at each location for chromosomes

where linkage was simulated. In a real data set where exact

computation with MERLIN was feasible, we compared the

accuracy of ALADIN and MORGAN. Finally, we compared

computation time of ALADIN, MORGAN, and MERLIN.

We used two pedigrees taken from practical linkage studies

in our evaluation. Pedigree I, shown in Figure 3, was taken

from a prostate cancer (PC [MIM 176807]) study. Pedigree

II, shown in Figure 4, was taken from a pituitary adenoma

predisposition study.2 Because these pedigrees are too large

for exact computation with MERLIN (number of bits > 25,

see Table 2), we considered three subpedigrees for our com-

parisons between ALADIN and MERLIN: (1) pedigree Ia,

the subpedigree of I consisting of the cases 4, 8, 9, 12, their

ancestors, spouses, and children, (2) pedigree Ib, the subpedi-

gree of I consisting of only the cases 4, 8, 9, 12, and their an-

cestors, and (3) pedigree IIa, the subpedigree of II consisting

of the cases 102, 114, 131, and the ancestors of these cases.

We used the lm_ibdtests and lm_markers programs in the

MORGAN 2.8.1 package to obtain MCMC approximations

of NPLpairs and parametric LOD scores, respectively. MOR-

GAN requires the user to specify a number of parameters.

We used a default value of 100,000 scans for the sampler.

The number of burn-in scans and sequential imputation

steps for initialization of the Markov chain were set to the

values recommended by Wijsman et al.14 in a comprehen-

sive evaluation of the MCMC programs MORGAN and

SIMWALK2. With these settings, the authors showed that

MORGAN can be expected to produce accurate approxima-

tions and that it is generally more efficient than SIMWALK2.

All analyses were performed on a small cluster of five

AMD 64 bit machines with two dual-core 2.2 GHz proces-

sors. Each machine had 16 GB of physical memory avail-

able and 30 GB of swap space.

Simulation Study

Comparison with MERLIN

We assessed the accuracy of ALADIN and MORGAN in data

sets simulated for pedigrees Ia, Ib, and IIa. We emulated

a genome scan by generating marker data for the autoso-

mal chromosomes. To see whether the linkage signal could

be accurately detected, we simulated linked chromosomes

where the inheritance vector at the middle marker was

fixed such that all cases shared one allele IBD, which is the

maximum for these pedigrees because there is no inbreed-

ing. To determine a possible bias, we also simulated un-

linked chromosomes where the inheritance vector at the

middle marker was randomly generated.

Marker data was simulated under two conditions: link-

age equilibrium (LE) and linkage disequilibrium (LD) be-

tween the markers. In the condition of LE, the founder

alleles were sampled with the estimated allele frequencies

Figure 4. Pedigree II
The pedigree was taken from a pituitary adenoma study of Vierimaa
et al.2 Affected individuals are represented by a black symbol, and
genotyped individuals are indicated with an asterisk.
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Table 2. Computation Time

Computation Time (min)a

Pedigree LE LDb

Label Cases T P HMM Complexityc MERLIN ALADIN MORGANd MERLIN ALADIN

Ia 4 4 32 18 422.5 35.0 35460 11000 13.5

Ib 4 4 24 14 34.0 69.5 32855 148.5 24.5

IIa 3 3 35 18 288.5 10.5 38115 2191 4.0

I 7 7 53 36 Ne 49535 47510 N 16282

II 6 4 44 27 N 171.5 41760 N 78

a Computation time is reported as estimated time required to analyze the 50K Affymetrix XbaI array in minutes.
b MORGAN cannot handle LD.
c Complexity is measured as the log2 of the number of hidden states of the exact HMM for a marker (the number of bits).
d MORGAN was run with 100,000 MCMC scans.
e N indicates that exact computation with MERLIN was not feasible.
of the Affymetrix 50K XbaI array in 42 European ancestry

samples provided by Affymetrix. In this dataset, there are

57,093 polymorphic autosomal markers, with mean minor

allele frequency 0.22. In the condition of LD, founder

haplotypes were sampled with haplotype block definitions

and haplotype frequency estimates obtained with HAPLO-

VIEW26 (spine-of-LD rule with D0 ¼ 0.8). HAPLOVIEW was

run on data from Phase I of the International HapMap Pro-

ject,27 consisting of the genotypes of 90 individuals from

Utah of northwestern European ancestry at the markers

of the 50K XbaI array. There were 51,634 polymorphic,

autosomal markers on the array that were in the Phase I

dataset and passed HAPLOVIEW’s quality control tests.

They were assigned to 18,343 haplotype blocks (including

6103 blocks containing only one SNP). The maximum

number of SNPs in any one block was 28. The number of

haplotypes per block ranged from 2 to 31 (mean 3.4), and

haplotype frequencies ranged from 0.01 to 0.98 (mean

0.29). Simulations were performed with the assumption

of linkage equilibrium between neighboring blocks. Table 3

gives an overview of the number of replicates simulated

in each condition.

Because the clustered-markers option for modeling LD in

MERLIN required significantly more computation time

than the standard analysis assuming LE, only 22 chromo-

somes in the condition of LD were simulated and analyzed

with ALADIN and MERLIN. Because of the long computa-

tion time of MORGAN, we analyzed only one replicate of

autosomal chromosomes 1, 3, 20, and 22 with MORGAN.

Furthermore, MORGAN cannot model LD, so no chromo-

Table 3. Number of Replicates Simulated for the Comparison
with MERLIN

LE LD

Type ALADIN MORGAN ALADIN MORGAN

unlinked 2 3 22 ¼ 44 1 3 4 ¼ 4 1 3 22 ¼ 22 NA

linked 2 3 22 ¼ 44 1 3 4 ¼ 4 1 3 22 ¼ 22 NA

NA indicates that MORGAN cannot model LD.
The
somes were analyzed in the LD condition (indicated by

‘‘NA’’ in the table).

We used three measures to evaluate the accuracy: (1)

Dmean, the mean absolute difference over all markers on

the chromosome between the exact and approximate

scores, (2) Dmax, the maximum absolute difference over all

markers on the chromosome between the exact and ap-

proximate scores, and (3) Dmid, the absolute difference eval-

uated at the middle marker on the chromosome, where for

the linked chromosomes the inheritance vector was fixed.

Table 4 shows the error in the ALADIN approximation of

NPLpairs and NPLall for the various pedigrees and the condi-

tions of linked and unlinked chromosomes and LE and LD.

Note that for the comparison of the absolute errors across

different pedigrees, it is important that the range, i.e., the

difference between the maximum and minimum value of

NPLpairs and NPLall, be taken into account. The maximum

score was attained in almost all linked chromosomes at the

location of the middle marker. Overall, the approximation

of NPLpairs and NPLall was accurate with values of Dmean less

than 0.4 in all pedigrees and conditions. The absolute error

at the middle marker Dmid was smaller than 0.08 for pedi-

grees Ia and Ib and smaller than 1.4 for pedigree IIa. The

errors Dmean and Dmid were smaller for the unlinked chro-

mosomes than for the linked chromosomes. The relative

errors as a fraction of the exact value at the middle marker

(shown between parentheses for the linked chromosomes)

were smaller than 3%, except for the condition of LE for

pedigree IIa. The large relative error for this pedigree was

caused by two replicates with a large discrepancy at the

location where linkage was simulated, which we examine

in more detail below. On the remaining replicates, the

mean error Dmid was 0.5386 (1.42%), comparable with

the results for the linked chromosomes in the condition

of LD for this pedigree. Thus, in general, ALADIN accu-

rately detected the linkage signal.

The mean maximum errors (Dmax) were larger than

Dmean and Dmid, varying from 0.0912 to 0.7832 for the un-

linked chromosomes and from 0.1973 to 6.807 for the

linked chromosomes. We observed two typical situations
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Table 4. Error of ALADIN in NPLpairs and NPLall

NPLpairs NPLall

Pedigree Type N Range Dmean Dmax Dmid (Relative)a Range Dmean Dmax Dmid (Relative)

Linkage Equilibrium

Ia unlinked 44 9.90 0.0022 0.0912 0.0010 16.7 0.0020 0.0867 0.0008

Ia linked 44 9.90 0.0047 0.1973 0.0011 (0.0155%) 16.7 0.0052 0.2243 0.0026 (0.0209%)

Ib unlinked 44 9.90 0.0070 0.1647 0.0024 16.7 0.0067 0.1695 0.0023

Ib linked 44 9.90 0.0154 0.3483 0.0107 (0.1476%) 16.7 0.0208 0.5199 0.0227 (0.1996%)

IIa unlinked 44 50.7 0.0179 0.3017 0.0226 66.3 0.0177 0.2977 0.0223

IIa linked 44 50.7 0.3868 6.807 1.357 (15.55%) 66.3 0.4585 9.295 1.874 (17.73%)

Linkage Disequilibrium

Ia unlinked 20b 9.90 0.0102 0.7533 0.0011 16.7 0.0092 0.6504 0.0011

Ia linked 20b 9.90 0.0200 1.104 0.0070 (0.0854%) 16.7 0.0243 1.713 0.0160 (0.1159%)

Ib unlinked 22 9.90 0.0149 0.7832 0.0025 16.7 0.0133 0.7296 0.0022

Ib linked 22 9.90 0.0362 1.521 0.0776 (1.786%) 16.7 0.0460 2.333 0.1761 (3.498%)

IIa unlinked 22 50.7 0.0032 0.1069 0.0060 66.3 0.0032 0.1054 0.0059

IIa linked 22 50.7 0.2310 6.370 0.5279 (2.423%) 66.3 0.2845 8.881 0.7722 (2.641%)

Note that values of D are shown as means across N simulated chromosomes.
a Relative error is only reported for the linked chromosomes, where linkage was simulated at the location of the middle marker.
b MERLIN terminated with error status when chromosomes 1 and 2 were analyzed.
where these maximum errors occurred. The first situation

was the most general: Here, the maximum error was found

in a small region where the value of the statistic changed

sharply as a function of the location and did not affect

the value of the statistic at the location where linkage

was simulated. Figure 5A illustrates this situation for a rep-

licate of pedigree IIa. The second situation was found in

only two replicates, both for pedigree IIa: Here, the error

extended over a larger region that included the location

where linkage was simulated, as illustrated in Figure 5B.

For the condition of LD, we found that in pedigrees Ia

and Ib, the value of Dmax was mostly attained at the be-

ginning of the chromosome. We believe that this may

be partly explained by slight differences in our implemen-

tation of the clustered-markers approach and that of

MERLIN regarding how inconsistencies due to recombina-

tion events within a haplotype cluster are dealt with. The

number of inconsistencies was on average 1.3 5 1.6 per

chromosome per pedigree.

In Table 5, we compare the error of ALADIN and

MORGAN in NPLpairs on the subset of chromosomes ana-

lyzed by MORGAN. ALADIN had smaller values of Dmean

and Dmax than did MORGAN in pedigrees Ia and IIa and

larger values in pedigree Ib. The values of Dmid of ALADIN

were smaller than those of MORGAN in all pedigrees. In

addition to the replicates shown in the table, we analyzed

the two replicates for pedigree IIa where the error of

ALADIN extended over a larger region (described above)

with MORGAN. Interestingly, for both of these replicates,

MORGAN produced the same result as ALADIN, with the

corresponding error. Figure 5B illustrates this for one of

these replicates. Here, we found a relatively large difference

between the ALADIN approximation and the exact value

of NPLpairs: Both ALADIN and MORGAN yielded a similar

Figure 5. Comparison of ALADIN and
MORGAN with Exact Method
The figure shows exact, approximate, and
true simulated value of NPLpairs for two
typical replicates of pedigree IIa in the
condition of linked chromosomes and link-
age equilibrium. The location where link-
age was simulated is indicated with the
asterisk. Forty-two of the 44 simulated rep-
licates were similar to (A). For this repli-
cate, Dmean of ALADIN and MORGAN were
0.0913 and 0.1015, respectively. The max-
imum errors Dmax were respectively 4.439
and 4.571, and were both attained at
142.4 cM, a region where NPLpairs changed

rapidly. In two replicates, the situation was as in (B): ALADIN and MORGAN produced similar scores that both overestimated NPLpairs as
compared to the value obtained with MERLIN but did not overestimate the value of NPLpairs of the true inheritance vector. Here, the
maximum errors of ALADIN and MORGAN were 14.05 and 14.15, respectively, and were attained at 23.96 cM by both methods.
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Table 5. Comparison of Error in NPLpairs of ALADIN and MORGAN

Dmean Dmax Dmid (Relative)

Pedigree Type N Range ALADIN MORGAN ALADIN MORGAN ALADIN MORGAN

Ia unlinked 4 9.90 0.0051 0.0071 0.0923 0.3870 0.0059 0.0104

Ia linked 4 9.90 0.0043 0.0103 0.1671 0.4826 0.0090 (0.1306%) 0.0431 (0.5548%)

Ib unlinked 4 9.90 0.0085 0.0077 0.3206 0.1078 0.0011 0.0067

Ib linked 4 9.90 0.0568 0.0274 0.6345 0.1528 0.0135 (0.1565%) 0.0623 (0.7058%)

IIa unlinked 4 50.7 0.0044 0.0047 0.0489 0.0489 0.0001 0.0007

IIa linked 4 50.7 0.3287 0.5099 4.396 4.814 1.000 (2.265%) 1.312 (3.000%)

Note that values of D are shown as means across N simulated chromosomes.
score that underestimated the true value. This score was

closer to the value of the true inheritance vector than the

exact score. We believe that this phenomenon is most

likely due to multimodality of the posterior distribution

that the approximate methods did not fully take into ac-

count. We found no replicates where ALADIN overesti-

mated the value of NPLpairs, and MERLIN (yielding exact

results) did not overestimate it as well.

In Table 6, we compare the error of ALADIN and

MORGAN in parametric LOD scores. We assumed a disease

allele frequency of 0.001 and penetrance values (0.001,

0.20, 0.20), reflecting a dominant disease with low pene-

trance. We analyzed the same replicates as those used for

Table 6. ALADIN and MORGAN were both accurate, with

Dmean < 0.10 and Dmid < 0.11 for all pedigrees. The maxi-

mum errors Dmax of ALADIN and MORGAN were similar

and varied from 0.06 to 0.70. Because the LOD scores

ranged from �2 to 3.5 for the linked chromosomes, the

maximum errors in the parametric scores were similar to

the maximum errors found for the nonparametric scores.

We conclude that ALADIN was accurate and achieved a

similar performance as MORGAN.

Large Pedigrees

We evaluated the performance of ALADIN in pedigrees

I and II. Exact multipoint computation of NPLpairs with

MERLIN in these pedigrees is not feasible. However, it is

possible to calculate the exact null distribution as single-

locus computations are feasible in these pedigrees. The

type I error rate (false-positive rate) of an exact method

applied to fully informative marker data is given by the

probability that the NPLpairs statistic is larger than the sig-

Table 6. Comparison of Error in Parametric LOD Scores
of ALADIN and MORGAN

Dmean Dmax Dmid

Pedigree Type N ALADIN MORGAN ALADIN MORGAN ALADIN MORGAN

Ia unlinked 4 0.0128 0.0116 0.4135 0.5274 0.0253 0.1092

Ia linked 4 0.0245 0.0081 0.6925 0.5284 0.0012 0.0015

Ib unlinked 4 0.0152 0.0114 0.3298 0.3680 0.0018 0.0015

Ib linked 4 0.0405 0.0121 0.3386 0.2233 0.0014 0.0023

IIa unlinked 4 0.0052 0.0056 0.0733 0.0931 0.0003 0.0004

IIa linked 4 0.0306 0.0719 0.4002 0.6154 0.0146 0.0150

Note that values of D are shown as means across N simulated chromosomes.
The Am
nificance threshold under the exact null distribution. We

used an importance-sampling approach to estimate the

type I error rate of ALADIN for high values of the signifi-

cance threshold on NPLpairs (i.e., small p values). For every

possible value of NPLpairs, we simulated 75 inheritance vec-

tors for the middle marker location; genotypes for 200

markers were simulated conditional on the inheritance

vector according to the specifications of the XbaI array.

For pedigree I, there are 13 unique values of NPLpairs, result-

ing in a total of 975 replicates. For pedigree II, there are 14

unique values of NPLpairs, resulting in a total of 1050 repli-

cates. The replicates were given the proper importance

weights so that the fact that they were not drawn from

the exact null distribution could be accounted for. ALADIN

was used for the approximation of NPLpairs at the middle

marker location in each replicate. This procedure yields

unbiased estimates of the type I error rate of ALADIN.

Figure 6 shows the empirical type I error rate for ALADIN

and the type I error rate corresponding to the exact null

distribution, with NPLpairs. We find that ALADIN did not

have an inflated type I error rate for the high values of the

significance threshold that are relevant for genome-wide

linkage analysis.

We also compared ALADIN and MORGAN in pedigree II

for chromosomes where linkage was simulated at the middle

marker. The inheritance vector at this marker was fixed such

that IBD sharing between the cases was maximal. Marker

data was simulated for eight autosomal chromosomes (1, 3,

5, 7, 11, 13, and 17) assuming linkage equilibrium between

the markers. For each marker location, we computed the

value of NPLpairs as estimated from the marker data by using

ALADIN and MORGAN. Because exact computation was not

feasible, we compared these with the value of NPLpairs of the

true inheritance vector at each marker location.

For all eight chromosomes, the score estimated with

ALADIN was very close to the score of the true inheritance

vector at each marker (Figure 7). For two chromosomes,

there were regions where MORGAN reported a score that

was lower than the score of the true inheritance vector.

In one case, this region included the marker location

where linkage was simulated. Although the exact multi-

point value of NPLpairs given the marker data is not known,

this figure suggests that the first-order Markov approxima-

tion of ALADIN has sufficient power to detect IBD sharing
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Figure 6. Empirical Type I Error Rate of
ALADIN
(A) shows the empirical type I error rate for
NPLpairs in pedigree I. (B) shows empirical
type I error rate for NPLpairs in pedigree
II. Note that the p value corresponding to
a given significance threshold on NPLpairs is
given by the solid curve.
among the cases. Because we found that the type I error

rate was not inflated, we infer that ALADIN might be

expected to produce accurate results in data sets where

exact computation is not feasible.

Application to Real Data

We compared the accuracy of ALADIN and MORGAN in

the real data set of pedigree Ia. The marker data are from

the SNPs of the Affymetrix 10K array. For each pair of SNPs

in strong LD (D0 > 0.8), one of the SNPs was removed from

the data set for the prevention of spurious linkage results.

We first compared the accuracy of ALADIN and MORGAN

for different numbers of MCMC scans for MORGAN, by us-

ing the NPLpairs statistic. We focused the subset of chromo-

somes 1–10 in the real data set for pedigree Ia. The exact

NPLpairs scores were computed with MERLIN. Figure 8

shows that with 10,000 MCMC scans, ALADIN was more

accurate than MORGAN; with 100,000 MCMC scans, ALA-

DIN was less accurate than MORGAN. Thus, for a small

number of MCMC scans, MORGAN was both slower and

less accurate than ALADIN, whereas the accuracy of ALA-

DIN was already high.

Second, we evaluated the accuracy of ALADIN by using all

of the autosomal chromosomes. The mean error in NPLpairs

of ALADIN was 0.019, and the maximum error was 0.32.

The mean and maximum errors NPLall were 0.032 and

0.35, respectively. The maximum exact values of NPLpairs

and NPLall were 7.65 and 12.8, respectively (at the same lo-

cation); the relative errors of ALADIN at this peak were

0.0029% and 0.0037%, respectively. We conclude that the

approximation of ALADIN in the real data set was accurate.

We also applied ALADIN to the full pedigree. Here, ALA-

DIN replicated an analysis with a pedigree-splitting approx-

imation28 that found that there was just one suggestive

linkage peak in this pedigree where four out of seven cases

inherited a haplotype identical by descent. This haplotype

sharing was confirmed by subsequent microsatellite geno-

typing and haplotype reconstruction with SIMWALK2

(L.M. FitzGerald, personal communication).

Computation Time

The computation time of MERLIN increases linearly with

the number of markers and exponentially with the number
616 The American Journal of Human Genetics 82, 607–622, March 2
of bits, which is the number of components of the inheri-

tance vector required for exact computation in the HMM

or, equivalently, the log 2 of the number of hidden states

of the exact HMM for a single marker. Computation time

of ALADIN increases exponentially with T, the number

of individuals in T, and linearly with the number of

markers. MORGAN requires that single-locus exact compu-

tations are feasible. If the pedigree is not inbred, which was

the case in all of our analyses, computation time increases

linearly with P, the number of individuals in the pedigree.

Table 2 shows computation times for the various pedi-

grees we analyzed, reported as the estimated computation

time required to analyze the 50K Affymetrix XbaI array. The

computation time of ALADIN was mostly shorter than that

of MERLIN for the pedigrees where exact computation

with MERLIN was practical, especially when LD was mod-

eled. Pedigree Ib without LD modeling forms an exception,

which can be most likely attributed to the efficient imple-

mentation of MERLIN. Computation times of ALADIN

were several orders of magnitude shorter than those of

MORGAN. Analysis of pedigrees II and I with MERLIN

was not practical. ALADIN was significantly faster than

MORGAN in pedigree II. In pedigree I, the efficiency of

ALADIN and MORGAN was comparable for the case of LE.

Again, ALADIN was more efficient when LD was modeled.

We studied how computation time of ALADIN and

MORGAN scaled with the number of markers. We found

that computation time of MORGAN increased quadrati-

cally with the number of markers analyzed (Figure 9A),

with a fixed number of 100,000 scans for the sampler. As

expected, computation time of ALADIN increased linearly.

ALADIN was designed for the purpose of analyzing dis-

tantly related individuals. We therefore investigated com-

putation time as a function of A, the number of untyped

ancestors through which the cases are related, for a fixed

value of T ¼ 4. The structure of the pedigree used in this

simulation was as follows: The four cases were related by

two common ancestors 3–15 generations back, where each

case was in a separate branch of the pedigree. The cases

formed the group T, and the group D did not contain

any individuals. Figure 9B shows computation time of

ALADIN and MORGAN for replicates simulated with 100

markers. Computation time of ALADIN did not clearly
008



Figure 7. Evaluation of ALADIN in
a Large Pedigree
The ALADIN and MORGAN estimates of
NPLpairs are compared to the NPLpairs of
the true inheritance vector for eight auto-
somal chromosomes (1, 3, 5, 7, 11, 13, and
17) for pedigree II. Exact multipoint com-
putation of NPLpairs was not feasible. The
inheritance vector at the middle marker,
indicated by the asterisk at the horizontal
axis, was fixed such that all six cases
shared one allele IBD at that location.

uses a multimeiosis sampler29 that

will most likely perform better for

linkage analysis of distantly related

individuals. ALADIN may also be of

use in pedigrees where analysis with

MERLIN in principle is feasible but

very time consuming, for instance,

when the clustered-markers approach

is used to account for linkage disequi-

librium. In the current implementa-

tion, ALADIN does not require any

parameters to be specified, which

can be an advantage over MCMC-

based programs, depending on the

expertise of the user.
show an increase with A. Computation time of MORGAN

increased linearly with A and was significantly higher than

that of ALADIN. Thus, for small T and large A, ALADIN

may be significantly more efficient than MORGAN.

Discussion

We presented ALADIN, a program for linkage analysis of

distantly related individuals. ALADIN produced accurate

estimates of nonparametric linkage and parametric linkage

scores. ALADIN also produced accurate estimates when

linkage disequilibrium was taken into account with the

same clustered-markers approach as MERLIN. Accuracy

was comparable with that of the state-of-the-art MCMC

program MORGAN. We have shown that ALADIN is espe-

cially useful when a moderate number of cases are related

through common ancestors many generations back and

the pedigree is too large to analyze with exact methods.

ALADIN may be several orders of magnitude more efficient

than MORGAN, depending on the number of typed indi-

viduals and cases. However, it should be noted that we

performed comparisons with version 2.8.1 of MORGAN,

which uses a basic locus meiosis (LM) sampler that was

not designed for the pedigrees with long descent chains

considered in this paper. Nevertheless, we believe that it

is the most powerful alternative to ALADIN for these ped-

igrees. The recently released version 2.8.2 of MORGAN
The A
The calculation of the conditional probabilities between

the states of the IBD variables of different loci may account

for a large portion of the computation time of ALADIN.

Because the pedigree structure is obviously the same for dif-

ferent pairs of adjacent markers, the only quantity varying is

the recombination fraction. It is likely that many pairs of

markers have very similar recombination fractions. One

can makeanadditionalapproximationbyusing a discretized

set of recombination fractions for which the conditional IBD

probabilities will be computed. Then for any pair of markers

encountered in the real data set, the IBD probabilities com-

puted for the fraction in the discretized set that is closest to

the true fraction can be used as an approximation. The com-

putation of the conditional IBD probabilities can be easily

performed in parallel. ALADIN currently has an option for

creating and using a collection of recombination fractions

so that the computationtime can bereduced. Asanexample,

for pedigree I, the computation time can be reduced to 4600

min from 16,282 min with a discretized set of 1000 marker

distances. The relative error in the marker recombination fre-

quencies due to discretization is small, at 0.36 % 5 0.26%.

We expect that the effect of this approximation on the con-

clusions of the linkage study will be negligible.

An additional way to reduce computation time is the use

of multiple IBD variables with fewer IBD configurations,

thus optimizing the trade-off between time spent on the

HMM calculations and the time spent on the computation

of the prior IBD probabilities. In addition, when more
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segregation indicators are explicitly modeled and/or multi-

ple IBD variables are used for subsections of the pedigree,

more accurate approximations may be obtained. This is

a direction for further research.

Although we found that the first-order Markov approxi-

mation was accurate for the pedigrees we considered, there

are situations where the approximation is known to have

problems. In particular for more distantly related individ-

uals, there is an increasing tendency for segments of IBD

sharing to cluster. If at three consecutive loci, A, B, and

C, two individuals are non-IBD at the middle locus B,

they are far more likely to be IBD at C if they are IBD at

A than if they are non-IBD at A.29 The reason for this is

that a single recombination event between A and B is

enough to break down the IBD sharing but that a recombi-

nation event in the same meiosis is sufficient to fully re-

store the sharing at locus C. The first-order Markov approx-

imation underestimates the probability of IBD sharing in

this situation.29 Preliminary simulations suggest that the

magnitude of this effect was small for the pedigrees studied

in this paper. It may be beneficial to include an error model

of some kind,21 so that if a marker in the non-IBD segment

absolutely precludes IBD, the approximation will not con-

sider the two IBD segments as independent realizations of

sharing. We plan on incorporating such an error model in a

future release of ALADIN. As a diagnostic, one may sample

from the posterior distribution of IBD configurations to

identify these segments.

The problem of how to deal with linkage disequilibrium

is an active area of research. Several LD models have been

proposed to estimate haplotypes and haplotype frequen-

cies for unrelated individuals.30,31 In theory, it is straight-

forward to combine LD models with pedigree models: One

can simply use one of the proposed LD models to model

the prior distribution of haplotypes for the founder indi-

viduals in the pedigree.16 The main issue then becomes

how to deal with the significantly increased computational

complexity of such a hybrid approach. Promising ap-

proaches using MCMC approximations have been recently

proposed,16 but these are still experimental.

We have chosen to use the clustered-markers approach

of MERLIN to account for LD between the markers. This

approach makes two simplifying assumptions to achieve

high computational efficiency. First, it assumes absence

of recombination between groups of markers that are in

strong disequilibrium, clustering such groups into single

‘‘supermarkers’’ (the haplotype blocks). If the markers clus-

tered together are very close, the impact of this limit on re-

combination is generally small. It may have a larger impact

if markers spanning larger distances (~1 cM) are clus-

tered.32 In pedigrees with long lines of descent such as

the ones considered here, there will be more recombina-

tions within clusters than in the smaller pedigrees to

which MERLIN is usually applied.

In our simulation of datasets, we allowed for recombina-

tion within clusters according to the marker map provided

by Affymetrix. As a result, ALADIN and MERLIN found

clusters where individuals’ genotypes were inconsistent

with the specified haplotypes in the cluster, that is, where

recombination had occurred within clusters. We found

that the number of inconsistencies in our simulations was

on average 1.3 5 1.6 per chromosome per pedigree. We ex-

pect that discarding of this small number of clusters will

generally not result in much loss of information when

high-density SNP arrays are used.

Figure 8. Evaluation of ALADIN with Real Data
The approximation error of ALADIN and MORGAN is compared on
the real data set for subpedigree Ia for varying number of MCMC
scans of MORGAN. The figure shows boxplots of the absolute differ-
ence between the approximate and exact NPLpairs of all points on
chromosomes 1–10. The number of MCMC scans is shown between
parentheses, and the computation times are denoted by t on the
horizontal axis.

Figure 9. Scaling of Computation Time
(A) shows on a log-log scale the computa-
tion time as a function of the number of
markers used in the multipoint analysis.
Computation time of ALADIN scaled line-
arly with the number of markers, whereas
that of MORGAN scaled quadratically with
the number of markers. (B) shows compu-
tation time as a function of A, the number
of untyped ancestors, for fixed number of
individuals T ¼ 4 and 100 markers.

618 The American Journal of Human Genetics 82, 607–622, March 2008



Second, the clustered-markers approach of MERLIN as-

sumes absence of LD between the haplotype blocks. Deal-

ing with these lower levels of LD that remain after clustering

without significantly reducing computational efficiency

is very difficult and beyond the scope of this article. The

limitations of the LD model should be kept in mind when

practical data sets are analyzed.

Finally, maximum-likelihood haplotype reconstruction

is straightforward in the framework we described. This

option is not yet available in ALADIN but is planned for

a future version.

Appendix A

Details of Single-Point Computations

The single-point likelihood of Equation 4 is given by

P
�
M,GD,GT,GA,sDnf

,sT,sAnf
jf
�

¼P
�
MDjGDÞP

�
GDnf

jsDnf
,GDf

,GT

�
P
�
GDf
jf
�
P
�
sDnf

�
PðMTjGTÞ

3 P
�
GTjsT,GAnf

,GAf

�
P
�
GAnf
jsAnf

,GAf

�
P
�
GAf
jf
�
PðsTÞP

�
sAnf

�
,

where the subscript f denotes a founder individual. The

conditional independencies of this likelihood are repre-

sented by the graphical model12,33 shown in Figure 2A.

The likelihood term

P
�
GT,GA,sT,sAnf

j f
�
¼P
�
GTjsT,GAnf

,GAf

�

3 P
�
GAnf
jsAnf

,GAf

�
P
�
GAf
jf
�
PðsTÞP

�
sAnf

�

is indicated by the rectangle in Figure 2. This term can be sim-

plified by noting that the ordered genotypes GAnf
are

uniquely determined by GAf
and sAnf

; the dependence of

GT on ðsT,GAnf
,GAf
Þ can be written as a dependence on

ðsT,GAf
Þ. Consequently, PðGT,GA,sT,sAnf

jfÞ also satisfies

the independencies of the graphical model shown in

Figure 2B. Furthermore, the individuals in A have no geno-

type information. Thus wecan sumover GAnf
, which removes

this variable from Figure 2B, and obtain (see Figure 2C)

PðGT,P j fÞ ¼
P

ðsT,sAnf
Þ˛P

P
GA

PðGT,GA,sT,sAnf
j fÞ

¼
P

ðsT ,sAnf
Þ˛P

P
GAf

PðGTj sT,sAnf
,GAf
Þ

3 PðGAf
j fÞPðsTÞPðsAnf

Þ
¼

P
ðsT,sAnf

Þ˛P

PðGTj sT,sAnf
,fÞPðsTÞPðsAnf

Þ: ð16Þ

We now observe that the conditional probability distri-

bution of GT is independent of the particular configura-

tion ðsT,sAnf
Þ˛P, i.e.,

PðGT j sT,sAnf
,fÞ ¼ PðGTjP,fÞ, c ðsT,sAnf

Þ˛P: (17)

This can be understood as follows. By the definition of P,

all configurations ðsT,sAnf
Þ˛P imply the same IBD configu-

ration of the alleles contained in GT. If a subset of alleles of

individuals in T is IBD given P, they are for any configura-

tion ðsT,sAnf
PlÞ˛P a copy of the same founder allele,
The A
although which allele of which founder does depend on

ðsT,sAnf
Þ. Because the general assumption is that the prior

allele frequency distribution is the same for every founder,

the independence follows.

We obtain Equation 5 from Equation 16 by using the

independence in Equation 17:

PðGT,P j fÞ ¼ PðGT jP,fÞ
X

ðsT ,sAnf
Þ˛P

PðsAnf
ÞPðsTÞ

¼ PðGT jP,fÞPðPÞ, (18)

where we used Equation 3 to obtain the right equality. The

graphical model corresponding to this marginal likelihood

is shown in Figure 2D.

Computation of Prior IBD Probabilities

with Variable Elimination

Gene-Dropping and Exhaustive Enumeration. First, we de-

scribe a naive procedure of calculating P(P) that consists

of dropping founder alleles and exhaustively enumerating

all configurations of segregation indicators. For this, we

consider a single locus and assign to each founder allele

a unique identifier allele:

Gp
f1
¼ 1, Gm

f1
¼ 2, Gp

f2
¼ 3, Gm

f2
¼ 4,., Gp

f jAf j

¼ 2 jAf j � 1, Gm
f jAf j
¼ 2 jAf j ,

where fi represents the ith founder in the group of un-

typed founder ancestors Af, G
p
fi

is the associated paternal

allele, and Gm
fi

is the maternal allele. Recall that A con-

tains the individuals through which individuals in T are

related and that T does not contain founders. This proce-

dure defines a marker with 2jAfj possible alleles, where

each allele observed in a nonfounder individual can be

traced back to one of the founder alleles, because identity

by state implies identity by descent. As a result, given al-

lele values, it is not necessary to know the individual

values of the segregation indicators in order to determine

IBD status.

Probabilities of IBD configurations of the alleles in GT

can then be determined by the exhaustive enumeration

all possible configurations of segregation indicators and

checking for each configuration which alleles in GT

have the same value and which have different values. Be-

cause a priori all meioses are independent (for a single lo-

cus) and maternal and paternal inheritance are equally

probable, P(P) is given by the number of configurations

of segregation indicators ðsT, sAnf
Þ with a given IBD con-

figuration P divided by the total number of possible con-

figurations.

Formal Definition. We shall now formalize this approach

of gene dropping. We denote the probability that allele Gi
x

and Gj
y, with i, j ˛ T and x, y ˛ {p, m}, are identical by de-

scent as P(IBD(Gi
x, Gj

y)). In the methods section, it was

shown that these probabilities can be obtained from the

likelihood term PðGT,GAnf
,sT,sAnf

jGAf
,fÞ indicated by the

dashed rectangle in Figure 2:
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ð19Þ

where Ikz is an indicator function that assigns to each

founder allele Gz
k a unique value as illustrated in the exam-

ple above. The kronecker d function d ðGx
i ,G

y
j Þ is equal to

one if Gx
i ¼ G

y
j , i.e., if Gx

i and G
y
j are IBD, and zero if

ðGx
i sG

y
j Þ. The proportionality constant is given by

1=PðGAf
¼ IjfÞ. Thus, given the unique assignment of the

alleles of the founders in A, the sum over all configurations

of ordered genotypes and segregation indicators yields the

desired IBD probability.

Probabilities of IBD configurations of more than two al-

leles can be obtained by the replacement of d(Gi
x,Gj

y) in

Equation 19 with the appropriate product of d functions.

For instance, the IBD configuration denoted by the parti-

tioning ðGp
1,G

p
2ÞðG

p
3Þ (see the example in the Material and

Methods), follows from the expression

d
�
Gp

1,Gp
2

��
1� d

�
Gp

1,Gp
3

��
:

Here, G
p
1 and G

p
2 must have the same value (thus IBD given

GAf
¼ I), and G

p
3 is required to have a different value than G

p
1

(and hence G
p
2), yielding the desired IBD indicator function.

We compute the conditional probabilities PðPlþ1jPl,qÞ
from the joint distribution PðPlþ1jPl,qðlþ1,lÞÞ in a two-locus

model by using Equation 14. These joint distributions can

be obtained by the generalization of Equation 19 to a two-

locus model and the use of products of d functions to de-

fine the IBD configurations of the two loci corresponding

to the variables Plþ1 and Pl. Note that these probabilities

will depend on the recombination fractions q.

Variable Elimination. In Equation 19 we have formulated

the problem of calculating (multilocus) IBD probabilities as

likelihood computations. Explicit evaluation of the sum is

exponential in the number of variables and becomes infea-

sible as A grows large. However, given this formulation, it

is straightforward to perform the summation more effi-

ciently with the variable-elimination algorithm.23,24 This

technique has been successfully applied to the problem

of genetic linkage analysis: It is one of the core operations

of the program SUPERLINK,24,34 and the Blocking Gibbs

sampler for linkage analysis12,25 uses related techniques

to perform exact likelihood computations in pedigrees.

We refer to their papers for detailed explanation of the

methodology.

Here, we mention the most important details of how we

tailored the variable-elimination algorithm to the problem

of the computation of a priori IBD probabilities. For the
620 The American Journal of Human Genetics 82, 607–622, March 2
calculation of P(P), we need to compute joint probabili-

ties of the possible assignments of variables GT, where

each variable Gi
x ˛ GT may take 2jAfj possible values.

This makes the computation more complex as compared

to the calculation of the likelihood of the observations

P(Mjf), but it can still be solved with the same variable-

elimination technique. The elimination order is deter-

mined as described by Fishelson et al.;34 however, the vari-

ables of interest GT are not eliminated, but retained

throughout the elimination procedure. This is the stan-

dard procedure for the calculation of joint-probability dis-

tributions in Bayesian networks.35,36 In addition, we apply

value abstraction24,34,37 to reduce the number of configu-

rations that have to be stored in memory; specifically, we

do not consider all genotype configurations Gc, sc for

a subset of variables c individually but cluster them

with respect to their IBD configuration. This does not af-

fect the joint probabilities but significantly improves

efficiency.

Estimation of Multipoint Parametric LOD Scores

The nonparametric linkage scores NPLpairs and NPLall can be

readily obtained from the marginal posterior distributions

Pðsl
Dnf

,PljM,f,qÞ:5 Given these posterior distributions, it is

also possible to compute LOD scores under the assumption

of a specific disease model.

We denote the vector of affection statuses for the indi-

viduals by Z, where Zi ¼ {affected, unaffected, unkown}

for individual i. Recall that by definition the affection sta-

tus of the individuals in A is unknown; the individuals in

T and D can have an affection status that is unkown, af-

fected or not affected. The LOD score is then given by

the ratio of the likelihood of the hypothesis that the dis-

ease locus is linked to the markers at location l and the

a priori likelihood of observing Z:

LODðlÞ ¼ log10

PðZ jM,f,q,d,p,lÞ
PðZ jd,pÞ : (20)

Here, p is the vector of penetrance values and d is the

vector of allele frequencies of the disease locus. The likeli-

hood term in the denominator of Equation 20 does not de-

pend on the marker data and requires a single-locus com-

putation that can be performed exactly. In the setting we

consider, the numerator, however, is intractable to com-

pute. Without loss of generality, assume that we wish to

compute this likelihood for the location of marker l. In

the approximate HMM (Equation 15) the numerator is

approximated by

PðZ jM,f,q,d,p,l ¼ lÞ
z
X
sl
D

,Pl

P
�
Z j sl

Dnf
,Pl,d,pÞPðsl

Dnf
,Pl jM,f,q

�
:

Thus, after the marginal distributions Pðsl
Dnf

,PljM,f,qÞ
have been obtained with the Lander-Green algorithm, it

is straightforward to estimate parametric LOD scores from

these with single-locus computations.
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